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Overview

● AMG and AMGe

● Element-Free AMGe: an interpolation rule based
on neighborhood extensions

● Examples of extensions:
—   -extension,
—     -extension
— extensions from minimizing quadratic

functionals

● Numerical experiments
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AMG and AMGe

● Assume a given sparse matrix
● AMG, or Algebraic Multigrid is MG based only on

the matrix entries.
● Essential components of AMG:

— a set,   , of fine-grid degrees of freedom
(dofs)

— a coarse grid,     ; typically a subset of
— a prolongation operator
— smoothing iterations; typically Gauß-Seidel or

Jacobi
— a coarse matrix given by
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Coarse-grid selection

● There are several ways to select the coarse grid

●     is typically a maximal independent set

● each fine-grid dof is typically interpolated from a
subset of its coarse nearest neighbors

Dc
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Building the prolongation, P

● Let         be a fine-grid dof
● Let               be a neighborhood of
● Let          be the coarse-grid dofs used to

interpolate a value at
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●   Examine rows of    corresponding to                 .
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●         is the minimal neighborhood of
● Replace      with modified version,

— by adding to     all off-diagonal entries in i th
row that are weakly connected to

— second, in all rows j for dofs strongly
connected to i :
– set

– set off-diagonals to zero

Prolongation in classical AMG
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●  ith row of P is ith row of
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● Key idea of AMGe: We can use information carried
in the element stiffness matrices to determine
—  the nature of the smooth error components
—  accurate interpolation operators
—  the selection of the coarse grids

AMGe differs from standard AMG by
using finite element information

● Traditional AMG uses the following heuristic (based
on M-matrices): smooth error varies slowest in the
direction of “large” coefficients

● New heuristic based on multigrid theory:
interpolation must be able to reproduce a mode with
error proportional to the size of the associated
eigenvalue
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AMGe uses finite element stiffness
matrices to localize the new heuristic

● Local measure:

where      are canonical basis vectors, and
are sums of local stiffness matrices

● If all local measures are small, the global measure
is bounded and small             good convergence!

● Then solving a small local problem yields a row of
the optimal interpolation (for the given set of C-
points).
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AMGe uses a small local problem to
define prolongation

● We can show that (for a given set of interpolation
points), the “optimal” prolongation is the set of
weights Q that satisfy the min/max problem:

● Furthermore, solving the min/max problem is
exactly equivalent to the following small matrix
formulation
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Prolongation in AMGe

● The neighborhood        is the union of the
elements having i as vertex

● We use the assembled neighborhood matrix

● Partition the neighborhood matrix as before

● ith row of P is ith row of
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Prolongation in AMGe, cont.

● Note that there is no need to modify

● Knowledge of the element matrices (used to create
the assembled neighborhood matrix) carries with it
implicitly the correct assignment and treatment of
“weak” and “strong” connection.  This is the main
contribution of AMGe methods

● AMGe produces superior prolongation. The goal of
this work is to accomplish the superior prolongation
without the knowledge of the element matrices

A ff
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AMGe - Richardson vs Gauß-Seidel

Two-level Multilevel
height amg amge amg amge
1 0.97 0.49 0.98 0.65
1/4 0.97 0.48 0.98 0.68
1/8 0.98 0.47 0.99 0.64
1/16 0.97 0.49 0.99 0.58
1/32 0.97 0.45 0.98 0.51
1/64 0.98 0.39 0.98 0.39

Richardson (1,0) cycle

d h A M G
in te rp o la tio n

A M G e
in te rp o la tio n

A M G e C G  ch o ice
an d   in te rp o la tio n

1 1 /3 2 0 .6 0 0 .2 0 0 .1 0
1 /4 1 /8 0 .9 5 0 .2 5 0 .0 9
1 /8 1 /1 6 0 .9 0 0 .2 6 0 .0 8

1 /1 6 1 /6 4 0 .9 2 0 .2 6 0 .0 8

Gauß-Seidel (1,0) cycle
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Prolongation in Element-free AMGe:
based on extensions

● Let   be the f-point
to which we wish to
interpolate

i
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Prolongation in Element-free AMGe:
based on extensions

● Let   be the f-point
to which we wish to
interpolate

●         is the set of
points in the
neighborhood of

i

)(Ω i
i
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Prolongation in Element-free AMGe:
based on extensions

● Let   be the f-point
to which we wish to
interpolate

●         is the set of
points in the
neighborhood of

●           is the set of
coarse nearest
neighbors of i

i

)(Ω i
i

)(Ωc i
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Prolongation in Element-free AMGe:
based on extensions

● Define         , the
set of “exterior”
points for the
neighborhood of   :
the set of points j
such that j is
connected to a fine
point in the
neighborhood of
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Prolongation in Element-free AMGe:
based on extensions

● Define         , the
set of “exterior”
points for the
neighborhood of   :
the set of points j
such that j is
connected to a fine
point in the
neighborhood of

)(ΩX i

i
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Prolongation in Element-free AMGe:
based on extensions

● We use the following window of the matrix A

   where we will only be interested in the blocks
shown.
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Prolongation in Element-free AMGe:
based on extensions

● Assume that an extension mapping is available:

   i.e., we interpolate the exterior dofs (“X”) from
the interior dofs f and c, by the rule

EE
I

I
E = 0

0

cXfX

vEvEv ccXffXX +=



VEH 20CASC

Prolongation in Element-free AMGe:
based on extensions

● We construct the prolongation operator on the
basis of the modified matrix

   that is,

   and

EE
I

I
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cXfX
Xfcfffcfff ,,=, 0

0

EAAA fXXfffff +=

EAAA cXXfcfcf +=
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Prolongation in Element-free AMGe:
based on extensions

● Then the ith row of the prolongation matrix P is
taken as the ith row of the matrix

● To make use of this method we must determine
useful ways in which to build the extension
operator
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Examples of extension:  A-extension

● Given   defined on        , we wish to extend it
to    defined on           .

)(Ω iv
vX )(ΩX i

● Let    be an exterior dof and
define                        to be
entries of A to which    is
connected.

iX

iX
ajS }≠:{= jiX , 0

● .The A-extension is:
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Examples of extension:    -extension

● Given   defined on        , we wish to extend it
to    defined on           .

)(Ω iv
vX )(ΩX i

● Let    be an exterior dof and
define                        to be
entries of A to which    is
connected.

iX

iX
ajS }≠:{= jiX , 0

● The    -extension is (a simple average):

∈ S
= iX

L2
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Examples of extensions: based on
minimizing a quadratic functional

● This is the method Achi Brandt proposed in 1999.

● Given   defined on       , find the extension    by
finding

   where

● This is a “simultaneous” extension, and is more
expensive than   -extension or    -extension
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Examples of extensions: minimizing a
“cut-off” quadratic functional

● Given   defined on       , find the extension
that satisfies

   where              and                      is
   a diagonal matrix. A good choice is the vector

   note that this is also a “simultaneous” extension
(but less expensive than the “full” quadratic)
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Classical AMG viewed as extension

● The classical (Ruge-Stüben) AMG corresponds to
selecting

   and defining an   -extension by setting

)(Ω∪}{=)(Ω iii c
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Properties of the extensions

● All the extensions described ensure that if   is
constant in        then the extension     is the
same constant in         , an important property
for second-order elliptic PDEs.

● For systems of PDEs we use the same extension
mappings, based on the blocks of A associated
with a given physical variable.  That is, the
extension to a dof     corresponding to the
physical variable k is based on dofs from
that describe the same physical variable k.

v
)(Ω i

)(ΩX i
vX

iX
)(Ω i
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A simple example: the stretched
quadrilateral

● Consider the 2-D Laplacian operator, finite-
element formulation on regular quadrialteral
elements that are greatly stretched:

● As          , the operator stencil tends to:

hh yx »

−−−

−−−

141
282
141

h
h

y

x
∞→
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A simple example: the stretched
quadrilateral: geometric approach

● For this problem the standard geometric multigrid
approach is to semicoarsen:

● And the interpolation stencil is:

PA
.
∗
.

=
0500

0500
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A simple example: the stretched
quadrilateral: the AMG stencil

● A simple calculation shows that classical AMG
yields the  interpolation stencil:

P GMA
...

∗
...

≈∗=
380333380

380333380

21
1

3
1

21
1

21
1

3
1

21
1
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A simple example: the stretched
quadrilateral: the neighborhood

● Let

● Define

   then

N

S

NW

SW SE

NE

EW

},{=)(Ωχ EWi
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A simple example: the stretched
quadrilateral: the A-extension

● For the A-extension the extension operators are:

   from which                   , and

   yielding the interpolation stencil:

A cf −−−−−−= 11111111
3
1

A ff =
21
401

PA
...

∗
...

≈∗=
830324830

830324830
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11
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1
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1
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E cX =
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21
1 E fX =

2
2
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A simple example: the stretched
quadrilateral: the    -extension

● A similar calculation for the weights using the
extension yields the  interpolation stencil:

L2

L2

PL2
...

∗
...

≈∗=
860463860

860463860
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3

44
61

44
3

44
3

44
61
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A simple example: the stretched
quadrilateral: the cut-off quadratic min

● For the cut-off extension the extension operators
are:

   from which                   , and

   yielding the interpolation stencil:

E fX −=
1
1

4
1E cX =

4411
4411

8
1

A ff = 7

A cf −−= 000077
2
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.
∗
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The stencil produced by various
extension methods:

● Classical AMG

●                                      A-extension

● L2-extension

●                                  cut-off quadratic

PA
...

∗
...

=
830324830

830324830

P GMA
...

∗
...

=
380333380

380333380

PL2
...

∗
...

=
860463860

860463860

PA
.
∗
.

=
050

050



VEH 36CASC

Numerical experiments

● Second order elliptic operator

— Unstructured triangular mesh (400, 1600,
6400, and 25600 fine-grid elements)

— coarsened using agglomeration method of Jones
& Vassilevski
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●  Element Agglomeration: Use graph theory to create coarse
elements first, then select coarse-grid by abstracting geometric
concepts of face, edge, vertex

AMGe requires coarse-grid elements &
stiffness matrices.
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Agglomeration coarsening

● Finest grid
— 1600 elements
— 861  dofs
— 5781 nonzero
          entries
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Agglomeration coarsening

● 1st coarse grid
— 382 elements
— 330  dofs
— 2602 nonzero
          entries
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Agglomeration coarsening

● 2nd coarse grid
— 93 elements
— 143  dofs
— 1397 nonzero
          entries
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Agglomeration coarsening

● 3rd coarse grid
— 33 elements
— 64  dofs
— 634 nonzero
        entries
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Agglomeration coarsening

● 4th coarse grid
— 15 elements
— 32  dofs
— 304 nonzero
        entries
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Agglomeration coarsening

● 5th coarse grid
— 7 elements
— 16  dofs
— 126 nonzero
        entries
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Agglomeration coarsening

● 6th coarse grid
— 3 elements
— 8  dofs
— 46 nonzero
       entries
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Agglomeration coarsening

● coarsest grid
— 1 elements
— 4  dofs
— 16 nonzero
       entries
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Coarsening history, unstructured 2nd
order PDE

● unstructured
triangular grid

● 2nd order PDE
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Convergence results, unstructured 2nd
order PDE

● 2nd order PDE problem
— unstructured triangular grid
— V(1,1) cycles
— Gauß-Seidel smoothing
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Numerical experiments

● 2d elasticity (including thin-body)
— structured quadrilateral grid,
—              is the beam thickness
— coarsened using agglomeration method
— the same coarse-grid is used for AMGe

(vertices of agglomerated elements)

hh yx =
d ],(∈ 10
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Coarsening history, elasticity problem

● Structured
rectangular
grid

● 2-d elasticity

● d = 1
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Coarsening history, elasticity problem

● Structured
rectangular
grid

● 2-d elasticity

● thin body
— d = 0.05



VEH 51CASC

Convergence results, elasticity

● 2d elasticity problem
— d = 1
— V(1,1) cycles
— Gauß-Seidel smoothing
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Convergence results, elasticity

● 2d thin-body elasticity problem
— d = 0.05
— V(1,1) cycles
— Gauß-Seidel smoothing
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Conclusions

● AMGe produces superior prolongation, but requires
extra information, i.e., the element matrices

● For purely algebraic problems, element-free AMGe
provides a technique for building pseudo-element
matrices based on several extension schemes

● Preliminary experimental results suggest that
element-free AMGe also produces superior
prolongation, competitive to AMGe results

● Systems of PDEs can be handled in a very natural
way
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